

Recent Advances in Video Transmission: Challenges and Opportunities

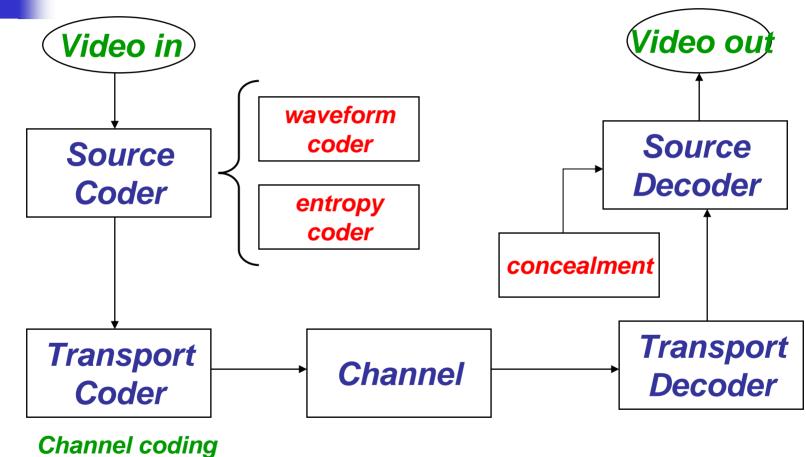
Aggelos K. Katsaggelos

Professor Northwestern University Department of EECS Evanston, IL 60208 www.eecs.northwestern.edu/~aggk

Plethora of exciting applications!

- Freedom of Multimedia Access (FOMA)
- Exciting Applications
- TiVo2Go
- Sales of phone digital cameras surpassed sales of digital cameras in 2001

 Seamless mobility, Ubiquitous access, UMA/UME

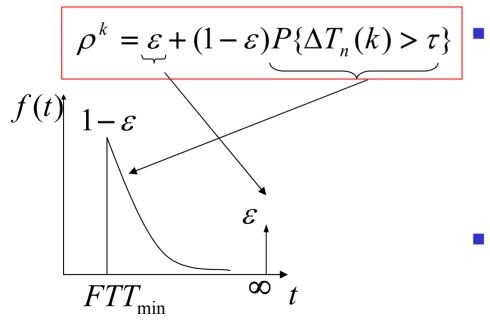

Video is the protagonist!

The Five+ Sense Communication Interface	Contribution to Human Perception
Visual	60%
Auditory	20%
Tactile	15%
Taste	3%
Smell	2%
Existance/Emotion	?%

Talk Objectives

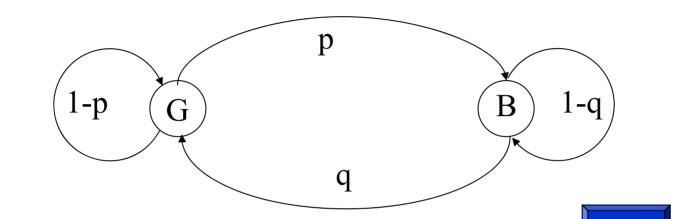
- Describe recent advances in video transmission
- Towards this goal, describe in some detail the building blocks of a video transmission system, and provide specific examples
- Describe "where are things going", challenges and opportunities

Video Communications System



packetization modulation

Channel Models


• Network model :

an independent time-invariant packet erasure channel + random delays

- Packet delay
 - Exponential distribution: fast decaying tail
 - Gamma distribution
 - Pareto distribution: slowly decaying (heavy) tail
- Packet Loss
 - Bernoulli
 - 2-state Markov (Gilbert)
 - High-order Markov

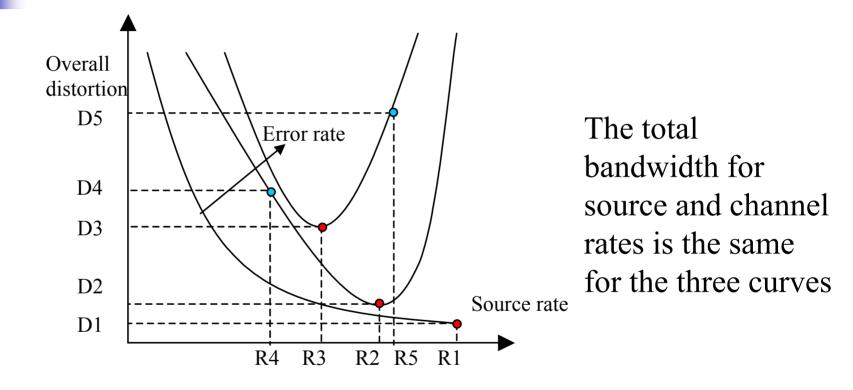
Gilbert Model

G: Good State, B: Bad State While in B, error prob=1-h burst length=1/q*1000/bitrate msec Overall BER=(1-h)*p/(p+q)

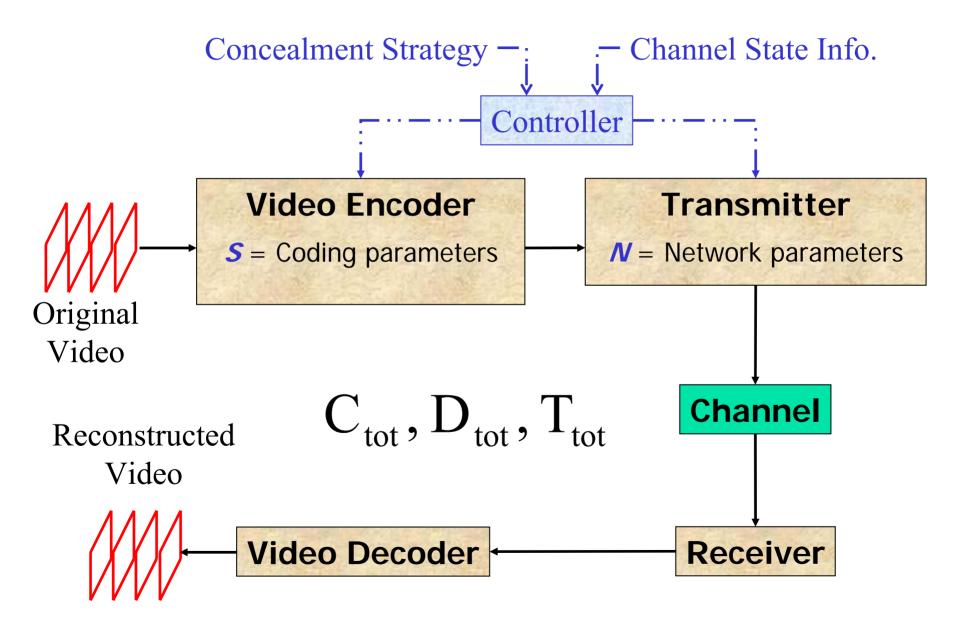
Gilbert Model BER = $5x10^{-3}$ Burst Length = 2.5ms Bad BER h = 0.5

Error Resiliency Challenges

Non-Robust Nature of (VLBR) Video Coding


- Highly Predictive
- Variable Length Codes (requires resynchronization)
- Broad Error Conditions
 - Random Bit Errors
 - Burst Errors
 - Packet Loss Errors
- Low Delay (and additional constraints on resources)
 - Interleaving can be a problem

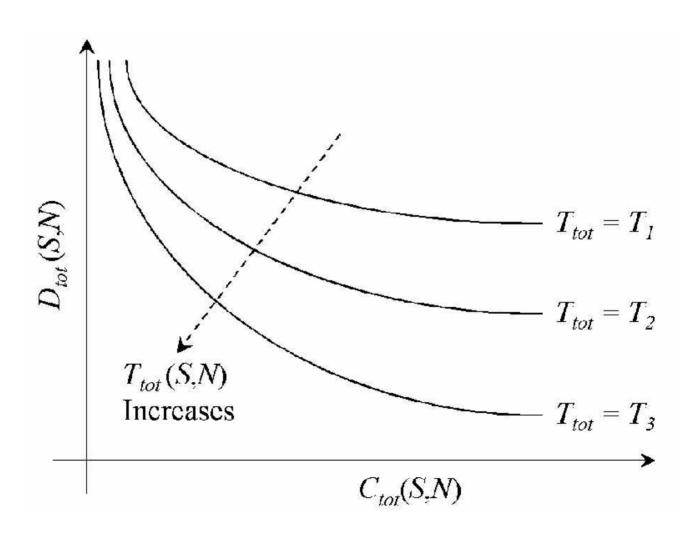
Considerations


Shannon's Separation Theorem

- Joint-Cross Channel Coding
- Network Adaptive Video Transmission
- Dynamic Resource Allocation
- Cross Layer Optimization
- Resource Allocation Based on "Importance of Content"
 - Protection and Energy are given to regions that are difficult to conceal
 - Regions of Interest / Object oriented coding

Joint Source-Channel Coding

System Model



Examples of cost/constraints

Cost

- Transmission (computation) power
- \$\$ for DiffServ
- Network Parameters
 - Scheduling
 - Transmission rate
 - Probability of packet loss
 - FEC
 - ARQ (fast, hybrid)
- A. K. Katsaggelos et al, "Advances in Efficient Resource Allocation for Packet-Based Real-Time Video Transmission", *IEEE Proc., Jan.* 2005.

TRADE-OFFS

Resource-Distortion Optimization Framework

 Goal: Minimize transmission cost while limiting the end-to-end distortion and delay.

min
$$C_{tot}(S,N)$$
 Transmission Cost *s.t.*:

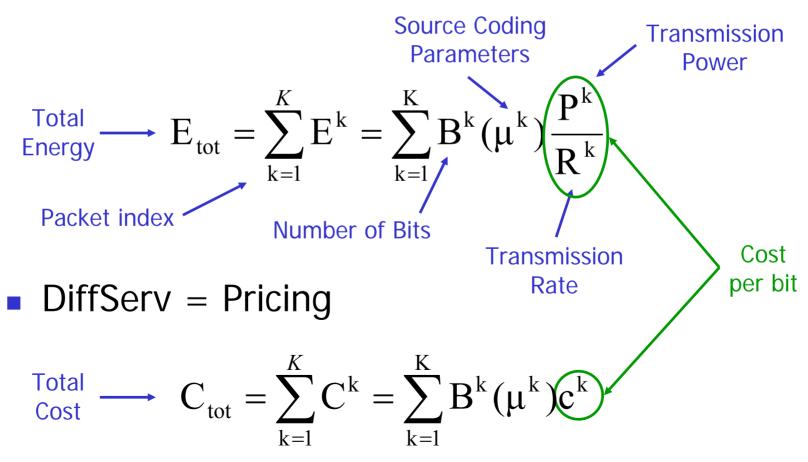
$$\begin{split} & \mathbf{D}_{\mathrm{tot}}(S,N) \leq \mathbf{D}_0 & \text{End-to-End Distortion Constraint} \\ & \mathbf{T}_{\mathrm{tot}}(S,N) \leq \mathbf{T}_0 & \text{Transmission Delay Constraint} \end{split}$$

Expected Distortion

Depends on coding parameters for the current packet Depends on concealment scheme (μ and ρ for other packets)

$$E\left[D^{k}\right] = \left(1-\rho^{k}\right)E\left[D_{R}^{k}(\mu^{k})\right] + \left(\rho^{k}\right)E\left[D_{L}^{k}\right]$$

- What Affects the Expected Distortion?
 - 1.Source coding
 - 2. Probability of loss in the channel
 - 3.Error concealment


End-to-End Frame Distortion

Even a stard Distantion

Vector of Expected \longrightarrow $\mathbf{D}_{\text{tot}} = \begin{bmatrix} E[\mathbf{D}^1], E[\mathbf{D}^2], \dots, E[\mathbf{D}^K] \end{bmatrix}^T$

Transmission Cost

Wireless = Transmission energy

17

Power vs. Probability of Loss

Transmission power for the kth packet

Probability of loss for the kth packet

- Empirical measurements or analytical models can be used by the transmitter to obtain the function $g(\bullet)$
- Example: (outage probability)
 - Narrowband slowly fading channel with AWGN and i.i.d channel fading per packet (L. Ozarow et al, *VT* '94)

$$P^{k} = g(\rho^{k}) = \frac{-C}{\ln(1-\rho^{k})} \quad \text{where} \quad C = \frac{N_{0}W}{E[H]} \left(2^{R/W} - 1\right)$$

 $P^k = g(\rho^k)$

R = channel rate; E[H] = expected channel fade; N_0W = noise power; W = bandwidth

Minimum Energy Approach

• Goal: Use the minimum energy to achieve an acceptable level of quality and delay.

$$\underset{\{\mu^k, P^k\}}{\text{minimize}} \qquad E_{\text{tot}} = \sum_{k=1}^{K} \frac{B^k(\mu^k)}{R} P^k$$

Total Transmission Energy for frame

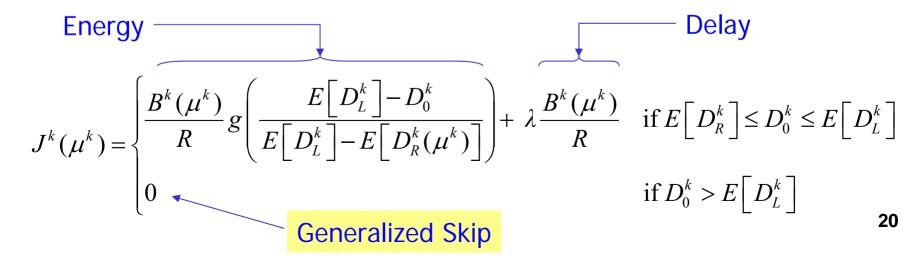
s.t.:

$$E\left[D^{k}\right] = \begin{cases} D_{0} & \forall k : E\left[D_{R}^{k}(\mu^{k})\right] \le D_{0} \le E\left[D_{L}^{k}\right] \\ E\left[D_{L}^{k}\right] & \forall k : D_{0} > E\left[D_{L}^{k}\right] \end{cases}$$

Maximum Expected Distortion Constraint per packet

and

$$T_{tot} = \sum_{k=1}^{K} \frac{B^k(\mu^k)}{R} \le T_0$$

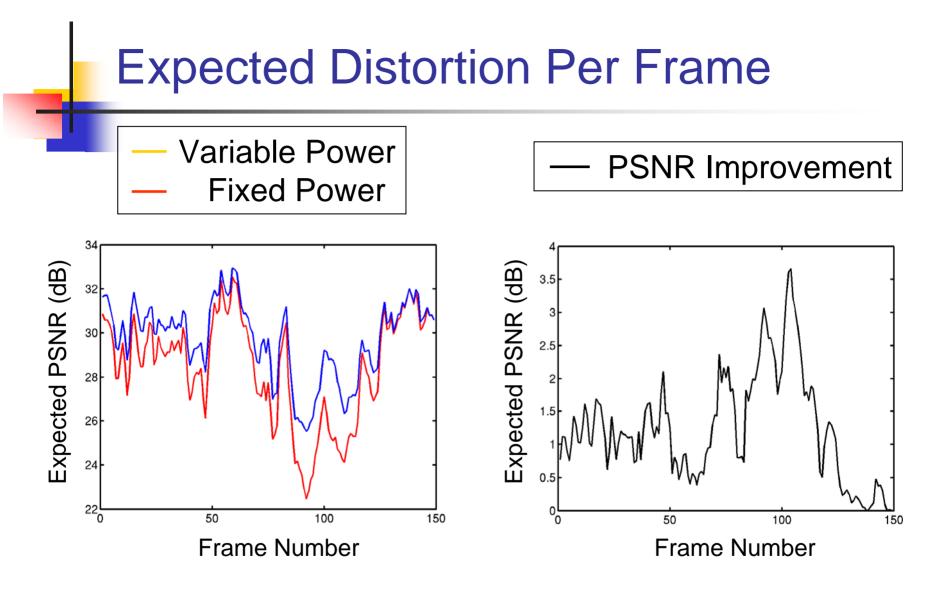

Delay Constraint for frame

19

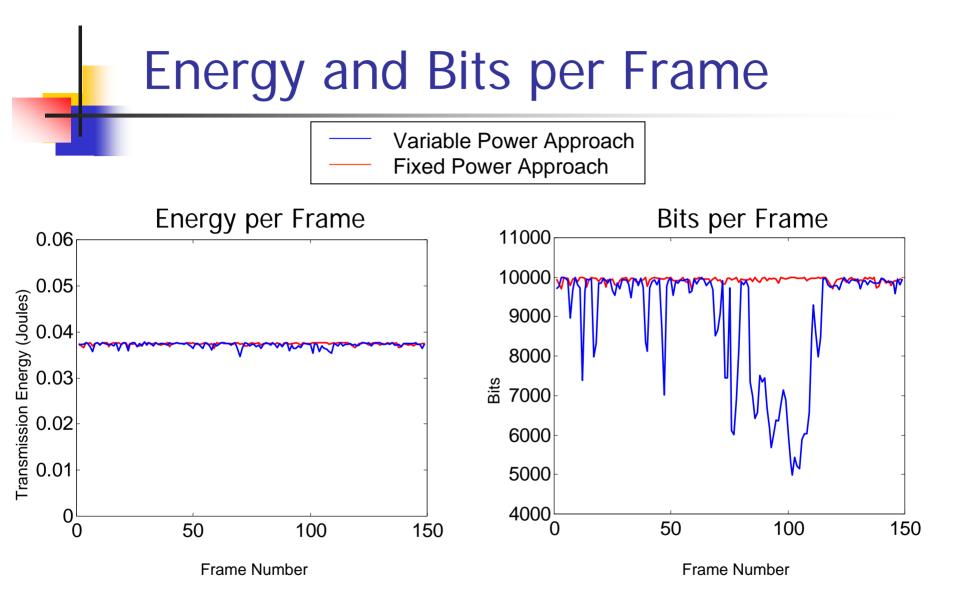
Min Energy Solution

- Coupling Power to Source Coding Parameters
 - For the distortion constraint
 - Assumption: spatially causal concealment strategy

$$\underset{\{\mu^k\}}{\text{minimize}} \qquad J_{tot} = \sum_{k=1}^{K} J^k(\mu^k)$$


Experimental Results

Compare:


- Variable Power Approach
 - Joint Source Coding and Power Allocation
 - min E[D(S,P)]; s.t.: $B_{tot}(S) \le B_{max}$, $E_{tot}(S,P) \le E_{max}$
- Fixed Power Approach
 - Independent Source Coding and Power Allocation
 - min E[D(S)]; s.t.: $B_{tot}(S) \leq B_{max}$

Setup:

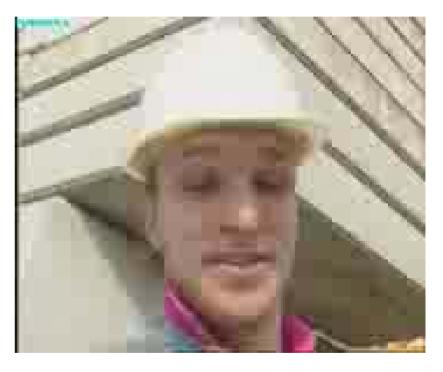
- Fixed Delay Constraint ($T_{max} = 33 \text{ ms}$)
- Fixed Transmission Rate (R = 300 kbps)
- Packetization: One MB per packet
- Concealment: Based on Neighboring MB to the left

"Foreman" Sequence: transmission rate = 300 kbps ; avg. prob. of error = 0.20

Visual Comparison: Slow Motion

Fixed Power Approach

Variable Power Approach



- Same energy and delay constraints per frame
- Approaches differ in source coding and power allocation

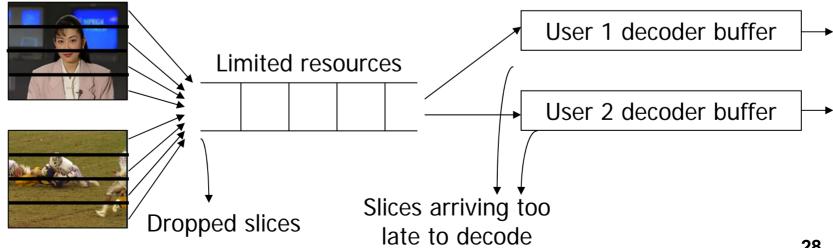
Visual Comparison: Real-Time

Fixed Power Approach Variable Power Approach

• How do spatio-temporal artifacts affect the *perceived* video quality?

Another Application

- General Problem Definition
 - Transmit multiple pre-encoded video sequences
 - To multiple users
 - Over HSDPA
 - Find optimal distribution of resources at base station
 - Such that each user receives a reasonable quality of service
- Limited Resources (limits achievable data rates)
 - Transmission power
 - Number of spreading codes (dwidth)
- Quality of Service Measures
 - End-to-end distortion of vuleo sequence
 - Transmission delay (stringent requirement for real-time applications)

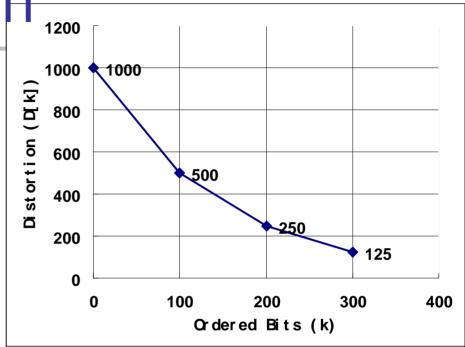

Video Sequences

Downlink Packet Scheduling

- "Dumb" Method
 - Round Robin
- State of the Art
 - Basic Idea: Allocate resources to users with better channel quality
 - Maximum Throughput Methods
 - Proportionally Fair Methods
 - Fairness criterion based on current average throughput
 - Gradient Based Scheduling
 - Maximize rate to users that will gain the most, subject to channel conditions
- Scheduling for Streaming Video
 - Minimize queue length (delay of head-of-line packet)
 - Current work does not consider rate-distortion trade-offs for individual video packets

Video Transmission Assumptions

- Frames are split into independently decodable slices
- Video will be viewed in real-time (slices from the current) frame must be received by the decoder before it finishes decoding the previous frame)
- Achievable data rates may not be sufficient to transmit every slice of every frame to all the users within the real-time constraints

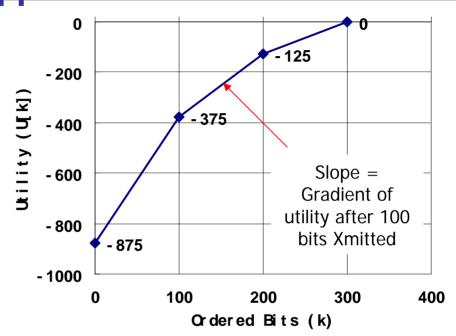

Formulation

- Key Idea
 - Order slices by amount of distortion reduction
 - Define Slice Utility in terms of distortion reduction
- Assumptions
 - Channel states may change by an order of magnitude over one frame's duration
 - Feedback is available every 2ms in HSDPA
 - Optimization performed every time slot (2ms)
 - Simple error concealment
 - Copying MB from the same position in previous frame
 - Complex error concealment adds dependencies between slices
 - complicates slice ordering
 - Will eventually include complex error concealment

Utility Function

- Utility Per User Based on Slice Ordering
 - D[k] := Distortion given k slices are received
 - D[M] = Minimum distortion

where, M = total # of slicesU[k] = (D[M] - D[k])

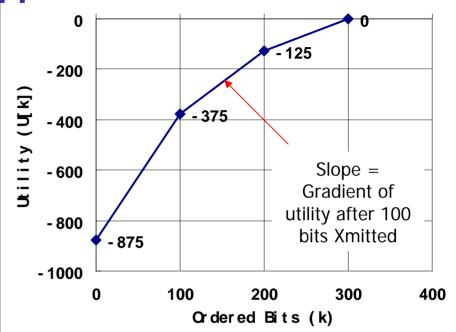

Distortion vs bits after slice ordering

Utility Function

- Utility Per User Based on Slice Ordering
 - D[k] := Distortion given k slices are received
 - D[M] = Minimum distortion

where, M = total # of slicesU[k] = (D[M] - D[k])

$$u[k] = U'[k] = \frac{D[k] - D[k+1]}{B_{k+1}}$$


Utility vs bits after slice ordering

Utility Function

- Utility Per User Based on Slice Ordering
 - D[k] := Distortion given k slices are received
 - D[M] = Minimum distortion

where, M = total # of slicesU[k] = (D[M] - D[k])

$$u[k] = U'[k] = \frac{D[k] - D[k+1]}{B_{k+1}}$$

Utility vs bits after slice ordering

 Gradient Based Scheduling – Maximizes rates per user weighted by gradient of utility function

$$\max \sum_{i=1}^{K} w_i u_i \cdot r_i$$

K : # of users *r_i* : rate per user *w_i* : additional weighting

HSDPA System Constraints

 $n_i \leq N_i$

K users

- Maximum transmission power:
 - p_i := power per user
- Number n_i of codes per user:
- Total number of spreading codes:
- Achievable rates: $r_i = n_i \Gamma(\xi_i \cdot SINR_i)$

•
$$SINR_i := \frac{p_i}{n_i} e_i$$

- Where e_i := channel state (SINR per unit power)
- Γ := Shannon capacity assuming Gaussian noise channel
- $\xi_i \in (0,1]$:= gap from capacity

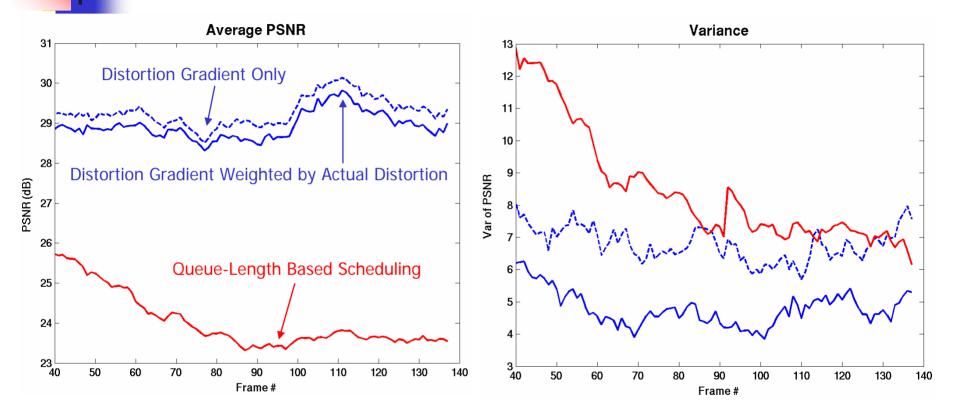
Problem Definition

Maximize sum of user rates weighted by utility gradients:

$$V^* = \max_{\mathbf{n},\mathbf{p}} \sum_{i=1}^{K} w_i u_i \cdot n_i B \log\left(1 + \frac{p_i e_i}{n_i}\right)$$

subject to :
$$\sum_{i=1}^{K} n_i \le N$$

and $\sum_{i=1}^{K} p_i \le P$


additional constraint : $n_i \le N_i$

Simulation I : Similar Fading Stats

HSDPA System

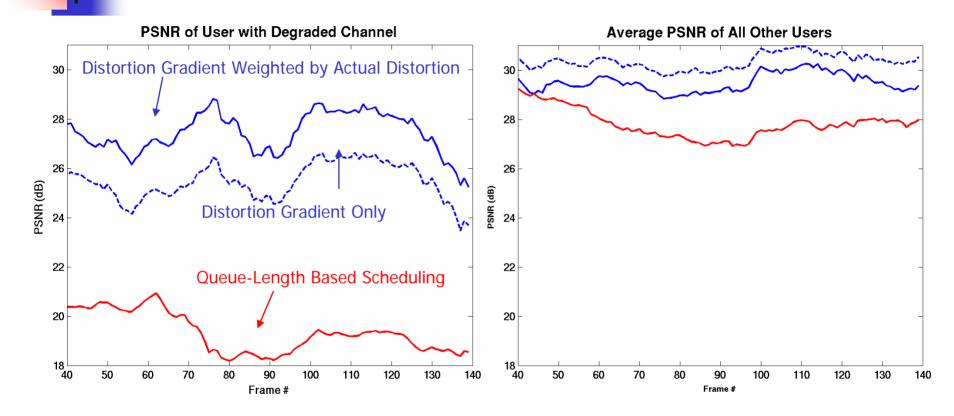
- # of Users (K) = 12
- Total # of spreading codes (N) = 15
- Max codes per user $(N_i) = 5$
- Total Power (P) = 9.9W
- Max SINR = 1.59
- Simulated uncorrelated Raleigh fading channels, with same average channel conditions, for each user
- Video Source
 - H.264 encoded at 256kbps
 - QCIF (176x144) {foreman, mother and daughter, carphone, news, silent, 0...139, 150...289}
 - 11 MBs per slice

Simulation I Results

Demo 1

6 users
P = 7W

Weighted Distortion Gradient Metric


Queue-based Utility Metric

Simulation II : One Degraded User

HSDPA System

- # of Users (K) = 10
- Total # of spreading codes (N) = 15
- Max codes per user $(N_i) = 5$
- Total Power (P) = 9.9W
- Max SINR = 1.59
- Simulated uncorrelated Raleigh fading channels, with one user having lower average channel quality
- Video Source
 - H.264 encoded at 256kbps
 - QCIF (176x144) {foreman, mother and daughter, carphone, news, silent, 0...139, 150...289}
 - 11 MBs per slice

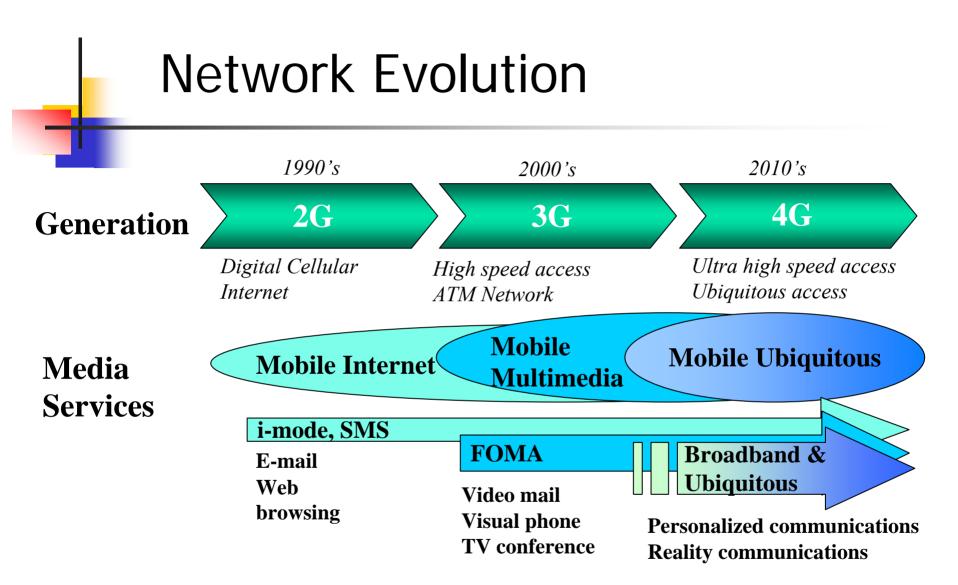
Simulation II Results

• The weighted distortion gradient tends to be fair to all users while not significantly sacrificing overall quality

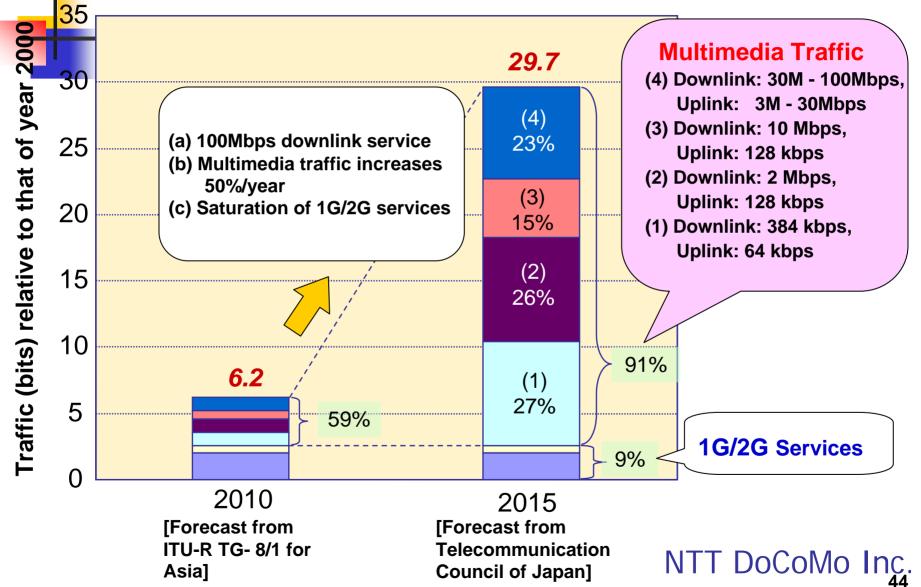
Reception Quality for User with Degraded Channel

Distortion-based Utility

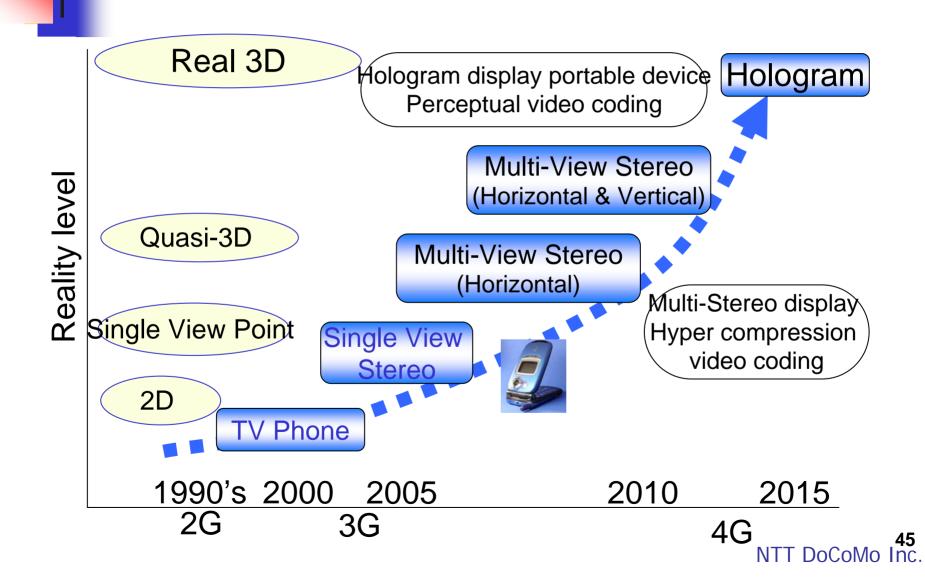
Queue length-based Utility



Closing Remarks


- Rich topic at the intersection of multimedia signal processing, communications, and networking
- Increasing number of applications
- Touched the tip of the iceberg

Future Research Directions


- Multi-hop, Image/Video Sensor Networks
- Multi-user, up- and down-link
- Hybrid networks
- More sophisticated concealment methods
- Distortion metrics, utility functions
- Scalable coding, MDC
- Data hiding appraoches

Forecast on Future Multimedia Traffic

Reality Visual Communications

Requirements for Future Mobile Networks

Media	Transmission speed	Delay	Connection Latency	Terminal capabilities
Speech/ 3D Audio	< 1 Mbps	<50ms	<1sec	 3D sound field control High efficiency loud speakers
Video/ 3D video	10Mbps (2D video) ~ 30Gbps (3D video)	<50ms	<1sec	•Real time hologram
Enhanced Reality	< 1Mbps	<< 50ms Should be predictable	N/A	•Eyeglass display •3D and multimodal UI
Five senses communications	< 1Mbps	<50ms	N/A	•Five sense sensors
Tele-existence	<10Mbps (Robotic I/F) < 1Gbps (Virtual avatar) < 100Mbps (Alter-ego existence)	< 10ms < 30ms < 5ms (Small and known jitter)	<1sec	• Alter-ego robot

Additional Work

Cross Layer Design

- Resource-Distortion Optimization Framework (A. K. Katsaggelos et al, "Advances in Efficient Resource Allocation for Packet-Based Real-Time Video Transmission", *IEEE Proc., Jan.* 2005)
- JSCC (L. Kondi, F. Ishtiaq, and A. K. Katsaggelos, "Joint Source-Channel Coding for Motion-Compensated DCT-Based Scalable Video," *IEEE Trans. IP*, vol. 11, pp. 1043-1052, Sept. 2002)
- Energy Efficient Wireless Video Streaming (Y. Eisenberg, C. Luna, T. Pappas, R. Berry, A. K. Katsaggelos, "Joint Source Coding and Transmission Power Management for Energy Efficient Wireless Video Communications", *IEEE CASVT*, pp. 411-424, June 2002)
- Data Rate Adaptation and Scheduling (C. Luna, Y. Eisenberg, R. Berry, T. Pappas, A. K. Katsaggelos, "Joint Source Coding and Data Rate Adaptation for Energy Efficient Wireless Video Streaming", *IEEE JSAC*, pp. 1710-1720, Dec. 2003)
- DiffSerV (F. Zhai, C. Luna, Y. Eisenberg, R. Berry, T. Pappas, A. K. Katsaggelos, "Joint Source Coding and Packet Classification for Real Time Video Transmission over DiffServ Networks", *IEEE Trans. Multimedia*, to appear).
- Variance-Aware Distortion Estimation (Y. Eisenberg, F. Zhai, C. Luna, T. Pappas, R. Berry, A. K. Katsaggelos, "Variance-Aware Distortion Estimation for Wireless Video Communications", *IEEE Image Processing, to appear*)

47

Additional Work (cont'ed)

- Hybrid (FEC, retransmission) Rate Control (F. Zhai, Y. Eisenberg, T. Pappas, R. Berry, A. K. Katsaggelos, "Rate Distortion Optimized Hybrid Error Control for Real-Time Packetized Video Transmission", *IEEE Trans. Image Processing*, to appear).
- Hybrid Intra/Inter FEC
- Hybrid (wired/wireless) Networks
- Object-based Encoded Video Transmission (CSVT 2006)
- FGS Scalable Video Transmission (ICC '04)
- Correlated Fading, Channel Mismatch Sensitivity (ICIP'04)